Acid/Base test

Name

All working out must be shown on the paper.

- 1) What is the pH of a solution, at 25 °C, with $[H_3O^+] = 0.0252$ M, pH =-log₁₀ $[H_3O^+] = -log_{10}0.0252 = 1.6$
- 2) What is the pH of a solution, at 25 °C, with $[OH^{-}] = 0.001 \text{ M}$ $[OH^{-}][H_3O^{+}] = 10^{-14}$ Find the $[H_3O^{+}] => [H_3O^{+}] = 10^{-14} / 0.001 = 10^{-14} / 10^{-3} = 10^{-11}$ Now find the pH pH =-log₁₀[H₃O⁺] = -log₁₀10⁻¹¹ = 11
- 3) In a 0.1 M H₂CO₃ solution the dominant species is Carbonic acid (H₂CO₃) is a weak acid. Therefore will have minimal ionisation. The ionisation reaction given below will hardly proceed to the right. H₂CO₃ (aq) + H₂O(I) => H₃O⁺(aq) + HCO₃⁻(aq) As for option (c) the ratio of H₃O⁺ to CO₃²⁻ is 1 to 2 acc4roding to the equation below. H₂CO₃ (aq) + 2H₂O(I) => 2H₃O⁺(aq) + CO₃²⁻(aq)
- A 6.0 M H₂SO₄ solution can be described as a ; Sulfuric acid is a strong acid. Concentrations of around 6 M are relatively concentrated.
 In a 0.1 M UC solution what is the dominant spacing?
- 5) In a 0.1M HCl solution what is the dominant species? HCl is a strong acid and will ionise fully in solution according to the equation below. HCl(aq) + H₂O(I) => H₃O⁺(aq) + Cl⁻(aq) Very little HCl will remain unreacted and so the dominant species present is H₃O⁺. Option (d) is not right. Since HCl is producing H₃O⁺ [H₃O⁺] > [OH⁻]
- 6) A 30.0 mL solution, at 25 °C, has a pH of 8.5. Which comment is true? A pH of 8.5 can be directly translated to a [H₃O⁺] = 10^{-8.5} Since at 25 °C the following expression is valid [OH⁻][H₃O⁺] = 10⁻¹⁴ it follows that the [OH⁻] is given by the expression below [OH⁻] = 10⁻¹⁴/10^{-8.5} = 10^{-5.5}
- 7) A 40.0 mL solution, at 25 °C, of a 0.001M HCl has 60 mL of distilled water added to it. Which of the options below best describes the change in pH?

A 0.001M HCl solution has a $[H_3O^+]$ of 0.001 or 10^{-3} , hence a pH of 3.

To work out the final pH of the diluted solution we need the concentration of H_3O^+ via the expression $C_1V_1 = C_2V_2$ where

 $\begin{array}{l} C_1 = 0.001 \\ V_1 = 0.04L \\ V_2 = 0.10L \\ C_2 = ? \\ C_2 = (0.001 \ X \ 0.04) \ / \ 0.1 = 0.0004 = 10^{-3.4} \ \text{so the pH of the final solution is 3.4.} \\ Option \ A \ \text{is correct.} \end{array}$

8) Which of the following are conjugate acid/base pair?

Conjugate acid / base pairs differ by ONE hydrogen. Option a) is the only conjugate pair.

9) What is the pH of a 30.0 mL sample of an unknown weak monoprotic acid with a concentration of 0.02 M.
5. Second the information given by it is increasible to coloulate the all of a weak acid acude.

From the information given, it is impossible to calculate the pH of a weak acid as we do not know how much of the acid has ionised and therefore the concentration of H_3O^+ produced.

10) Which statement is true?

- a) H_2CO_3 is not amphiprotic , it will act only as an acid.
- b) $SO_4^{2^2}$ is not amphoteric as it will act only as a base.
- c) HSO₄ does not act as a diprotic acid as it has only one proton to give..
- d) H_2O is amphoteric it can act as both an acid and a base according to the equation below $H_2O(I) + H_2O(I) => H_3O^+$ (aq) + OH (aq)
- Nitric acid (HNO₃)solution is added to sodium carbonate powder(Na₂CO₃) at 25 °C.
 a) Write the overall balanced equation for the reaction. Give states.
 2HNO₃(aq) + Na₂CO₃(s) => CO₂(g) + H₂O(l) + 2NaNO₃(aq)
 1 mark for balanced equation
 1 mark for states
 1 mark for products and formulae.

3 marks

b) Write the ionic equation for the above reaction. $2H^{\dagger}(aq) + 2NO_{3}^{-}(aq) + Na_{2}CO_{3}(s) => CO_{2}(g) + H_{2}O(I) + 2Na^{\dagger}(aq) + 2NO_{3}^{-}(aq)$ $=>2H^{\dagger}(aq) + Na_{2}CO_{3}(s) => CO_{2}(g) + H_{2}O(I) + 2Na^{\dagger}(aq)$ 1 mark for a balanced equation 1 mark for removing the spectator ions

2 marks

2) What is the pH of a 0.005 M Ba(OH)₂ at. 25 °C $Ba(OH)_2(s) \Rightarrow Ba^{2+}(aq) + 2OH^{-}(aq)$ $0.005 M Ba(OH)_2$ solution will have an OH⁻ concentration of 0.01M. Using the expression below calculate the $[H_3O^+]$ $[OH^-][H_3O^+] = 10^{-14}$ $\Rightarrow [H_3O^+] = 10^{-14}/10^{-2} = 10^{-12}$ $\Rightarrow pH = -log_{10}[H_3O^+] = 12$ 1 mark for calculating [OH⁻] 1 marks for calculating pH

2 marks

3) 3.65 grams of HCl is added to 200 mL of distilled water. Atomic mass of Cl =35.5, H = 1.0a) What is the pH of the resulting solution? $n_{HCl} = 3.65/36.5 = 0.1 \ mol$ $C_{HCl} = n/V = 0.1/0.2 = 0.5M$ Since HCl is a strong acid it will completely ionise according to the equation below. $HCI(I) + H_2O(I) => H_3O^+(aq) + C\Gamma(aq)$ Hence $[H_3O^+] = 0.5 = 10^{-0.3}$ pH = 0.3 1 mark for calculating concentration of [HCl] 1 mark for calculating pH 2 marks b) Calculate the [OH⁻] in the solution. $[H_3O^+] = 10^{-pH} = 10^{-0.3}$ $=>[OH^{-}][H_{3}O^{+}] = 10^{-14}$ $=> [OH^{-}] = 10^{-14}/10^{-0.3} = 10^{-13.7}M$

1 marks

- 4) 30.0 mL of a 0.01M NaOH is mixed with 70.0 mL of a 0.005M HNO₃.
 a) Write a balanced equation for the overall reaction.
 - NaOH(aq) + HNO₃(aq) => NaNO₃(aq) + H₂O(l) 1 mark for correct products and formulae 1 mark for balanced and states

2 marks

b) Which reactant is in excess?
 Mol of HNO₃ = C X V = 0.01 X 0.03 = 0.0003
 Mol of HaOH = C X V =0.005 X 0.07 = 0.00035

1 mark

c) What amount in mol of the excess reactant remains?
 According to the equation above the reactants react in a ratio 1:1.
 HNO₃ is in excess by 0.0005 mol.

2 marks

d) Calculate the pH of the resulting solution pH =-log₁₀[H₃O⁺] =-log₁₀ 0.0005 = 3.3